Blow-up Solutions for Linear Perturbations of the Yamabe Equation
نویسندگان
چکیده
For a smooth, compact Riemannian manifold (M, g) of dimension N ≥ 3, we are interested in the critical equation ∆gu+ ( N − 2 4(N − 1) Sg +εh ) u = u N+2 N−2 in M , u > 0 in M , where ∆g is the Laplace–Beltrami operator, Sg is the Scalar curvature of (M, g), h ∈ C (M), and ε is a small parameter.
منابع مشابه
2 00 6 Compactness of solutions to the Yamabe problem . III YanYan
For a sequence of blow up solutions of the Yamabe equation on non-locally confonformally flat compact Riemannian manifolds of dimension 10 or 11, we establish sharp estimates on its asymptotic profile near blow up points as well as sharp decay estimates of the Weyl tensor and its covariant derivatives at blow up points. If the Positive Mass Theorem held in dimensions 10 and 11, these estimates ...
متن کاملCompactness of solutions to the Yamabe problem . III
For a sequence of blow up solutions of the Yamabe equation on non-locally conformally flat compact Riemannian manifolds of dimension 10 or 11, we establish sharp estimates on its asymptotic profile near blow up points as well as sharp decay estimates of the Weyl tensor and its covariant derivatives at blow up points. If the Positive Mass Theorem held in dimensions 10 and 11, these estimates wou...
متن کاملFinite time blow up of solutions of the Kirchhoff-type equation with variable exponents
In this work, we investigate the following Kirchhoff-type equation with variable exponent nonlinearities u_{tt}-M(‖∇u‖²)△u+|u_{t}|^{p(x)-2}u_{t}=|u|^{q(x)-2}u. We proved the blow up of solutions in finite time by using modified energy functional method.
متن کاملSimple explicit formulae for finite time blow up solutions to the complex KdV equation
Simple explicit formulae for finite time blow up solutions to the complex KdV equation are obtained via a Darboux transformation. Diffusions induced by perturbations are calculated. 2007 Elsevier Ltd. All rights reserved.
متن کاملExistence and blow-up of solution of Cauchy problem for the sixth order damped Boussinesq equation
In this paper, we consider the existence and uniqueness of the global solution for the sixth-order damped Boussinesq equation. Moreover, the finite-time blow-up of the solution for the equation is investigated by the concavity method.
متن کامل